
David Gomez: Black Box Telemetry System

1

Abstract — A critical part of the engineering design process is the
collection and analysis of testing data to verify assumptions and find areas
for improvement. Unfortunately, test data can sometimes be difficult to
collect depending on what is being designed. In the case of something like the
MIT FSAE Electric race car this is certainly true. In the past, whatever real
data the FSAE team had came purely from bench top tests but the challenge
of collecting data from a large fast moving, and electrically noisy vehicle
proved challenging. With the Black Box telemetry system this issue will cease
to be a problem. The Black Box enables high latency and reliability recording
of vehicle data onto an internal SD card. The black box also allows even faster
response to incoming data by implementing a system to wirelessly transmit
several key data parameters live and also wirelessly transfer logged
information to a trackside computer, eliminating the need to take apart
electronics enclosures just to get the testing data from one run.

I. SYSTEM OVERVIEW

 Of critical importance for data logging in the FSAE car is
the CAN bus. CAN is a robust data transmission protocol that
is used extensively in the automotive industry. Every device on
the car communicates using CAN meaning that almost every
relevant piece of information about the car can be collected by
logging the CAN bus data. This is actually one of the primary
functions of the Black Box and was one of the main
considerations in many aspects of the design. The vehicle’s
CAN bus operates at a maximum rate of 500 kBd/s which
pushed the limits of some past logging attempts that had some
slow serial bottlenecks or inefficient SD card writing. For this
telemetry system, a Teensy 3.6 was chosen as the MCU
partially because of some of it’s very favorable CAN and data
logging related features. The Teensy 3.6 incorporates two
integrated CAN controllers

Fig. 1. High level overview of the Telemetry system. The red blocks are power
components. The blue blocks are low voltage digital.

which enable it to maintain two independent CAN bus
connections with only a single external transceiver, many other
microcontrollers require the addition of a transceiver and
controller. The Teensy 3.6 also has a built in 4 bit SD interface
to connect with an SD card. This interface improves on the
standard SPI interface by using four parallel data lines instead
of just one. That combines with the blazing 180 MHz processor
enables the Teensy 3.6 to reach write speeds exceeding 15
MB/s, which allows the Teensy to easily log every message on
the bus and still have overhead for other tasks.
 The SD card is the primary data logging device in this
system; however, in discussions with team mates it became
evident that there was interest in having access to some data in
real time. For this reason, a wireless XBee radio was also
included. The XBee is essentially a wireless serial cable that
enables long range wireless communication between two
devices. The latency is somewhat low, only around 100 kBd/s,
however, only a few specific data signals and error messages
need to be received live so this does not cause any issue.
 The XBee in the Black Box communicates with another
XBee which is connected to a laptop which will be placed near
the track the car is driving on. The laptop is running a custom
python program (which will be explained in more detail later)
that enables incoming live data to be visualized and also data
stored on the SD card to be parsed. The XBee also allows the
additional functionality of downloading testing files stored on
the SD card wirelessly without having to physically connect the
SD card to the computer. This is useful as the FSAE car must
be waterproof so all electronics are typically stored in well
sealed and covered enclosures which can be a pain to access and
open.

II. HARDWARE OVERVIEW

A. Power
The only source of power for electronics on the FSAE car

comes from a 12 volt battery used to power all the low voltage
electronics. As all the digital electronics in the Black Box
require 3.3 volts to function, conversion was necessary.
Because of the large gap in voltage, a linear regulator would
have been unpleasantly inefficient so a buck converter was used
instead. The only downside to the buck converter is that it is
significantly more complicated to implement requiring more

The Black Box: A Data Acquisition and Telemetry System for the MIT
FSAE Electric Race Car

David Gomez

David Gomez: Black Box Telemetry System

2

components and board space as well as careful placement of
components. During testing on a proto-board, the buck
converter caused issues with the microcontrollers ability to
proper reset its self during turn on due to ringing caused by
switching on the 3.3 volt. This problem will likely go away once
the design is properly implemented on a PCB.

B. Teensy 3.6
At the heart of the Black Box lies the Teensy 3.6. The Teensy

3.6 is fantastic for this application as it’s dual CAN controllers
and integrated SD card reduce the component count needed. It’s
32 bit 180 MHz ARM processor has more than enough speed
to manage both data logging, processing, and transfer. The
Teensy 3.6 also has an integrated real time clock which is useful
for creating timestamps to tag the data collected. In figure 2,
note that the coin cell battery connected to the Teensy is used
to power the real time clock

Fig. 2. Schematic of the electrical system.

even when there is no power being applied to the board. This
prevents the current time from being lost. Also in figure 2 note
the connections on pin 22 and 23. These are both analog inputs
used to measure and log both the LV battery battery voltage and
3.3 volt Black Box voltage.

C. CAN

As previously stated, the Teensy 3.6 has two dedicated CAN
controllers. These devices are responsible for taking raw data
and placing it into CAN data frames. They also handle other
aspects of CAN communication such as message priorities and
masking. Previous microcontrollers used on the FSAE car
required a dedicated external CAN controller chip; however,
this need is eliminated by the Teensy 3.6. Both systems still
require a CAN transceiver though. The CAN transceiver is
responsible for converting the CAN data frame from digital
logic levels to the differential signal protocol needed for proper
CAN communication. The TI SN65HCD231DR was selected

for this task as it can operate with out extra external components
and is also capable of operating on a 1 mega baud per second
CAN bus, allowing for future improvements in performance.

D. XBee

The XBee selected for this application is the XBee-Pro S1.
This device has a theoretical range of 1 mile and can
communicate serial information at a maximum rate of 115,200
kBd/s; however, in practice a rate of 111,111 kBd/s must be
used. This is because the XBee only has an internal master clock
at 16 MHz and therefore can only generate serial data
transmissions at integer multiples of this master clock. 111,111
kBd/s is the closest integer multiple to 115,200 kBd/s that
dividing down a 16 MHz can give; however, the much faster
clocks in both the Teensy 3.6 and USB-Serial adapter
connected to the laptop are capable of communicating at almost
exactly 115,200 kBd/s. This mismatch in speed can cause a lot
of errors so the best solution is to require the faster devices to
match the actual speed of the XBee.

E. IMU
The Black Box also incorporates a LSM9DS1TR which is a

9 degree of freedom inertial measurement unit. This is a sensor
that incorporates a 3 axis accelerometer, gyroscope, and
magnetometer enabling a variety of useful motion based
measurements to be made and logged such as lateral
acceleration. The LSM9DS1TR communicates with the Teensy
over an SPI interface. The sensor has separate outputs for the
accelerometer/gyroscope and magnetometer which are selected
between via two different chip select pins.

III. SOFTWARE OVERVIEW
The software exists in two main parts, C++ code that runs

on the Teensy and Python code that runs on the trackside
laptop.

A. Black Box Software
The code that runs on the Black Box has one primary

purpose: log every CAN message received on the bus. Once
messages are received, the Black Box is also responsible for
determining if a message should also be instantaneously
transmitted wirelessly for live data which it does by
comparing the CAN ID of the message to a list of messages
that should be sent live. The Black Box is also capable of
excetuing commands sent from the trackside laptop. This is
primarily used to allow the laptop to signal the Black Box to
dump the data from a file over the wireless channel.

The code that runs on the Black Box is intentionally limted
in the processing it does on the data. The CAN messages are
logged in their raw form, only a timestamp is appended to
them. To save space, at the top of each data file the Black Box

David Gomez: Black Box Telemetry System

3

Fig. 3. A flowchart of the Black Box software’s main control loop.

makes, a 4-byte number representing the current unix time
from the real time clock is saved. Each subsequent CAN
message logged begins with 29 bits that represent the time in
milliseconds since the unix time at the start of the data file.
The following 11 bits are used to store the CAN ID of the
message. The next 8 bytes are then reserved for the payload of
the CAN message. One CAN message take 13 bytes to log.
Even though some messages have data and IDs that could be
stored in fewer bits this fixed width encoding is used to
simplify the process of parsing the data and to eliminate the
need for any special position marking characters.

B. Laptop Software
In order to parse the raw data collected by the Back Box, I

have created a GUI interface in Python that allows a user to
parse raw data files that are either on an SD card connected to
the computer or downloaded from the Black Box wirelessly into
CSV files that identify the meaning and value of the data.

Fig. 4. The main window of the GUI interface. The top bar contains buttons

to parse data from either an SD card or to download data from the Black Box.
The center area is populated with buttons that open a menu to view live data
generated and sent to the laptop.
The software automatically generates a separate CSV file for

each CAN message type which enables easy plotting of the
data. To select files for parsing, two different methods are used.
The SD card button opens up a standard file selection dialog
that allows the user to see the contents of the SD card and then
select the file they want. When the user selects the download
button, the laptop XBee sends a command to the Black Box to

Fig. 5. An example of the file listing from the Black Box. The file names are
created in the format MONTH_DAY_HOUR of the time of creation. If a file
of the same name already exists, a letter is appended.

return a list of all the file names stored on the device. The file
names are then displayed to the user as shown in figure 5. The
user can now select a desired data file at which point the Black
Box will be triggered to dump the file’s data to the laptop
XBee. The data is parsed and saved to CSV files in the same
way as the data from an SD card is.
 The GUI also manages an interface that allows the user to
see live data visualizations of whatever data has been selected.
Only CAN messages that have been specified in the Black
Box code will be sent live. There are also parameters to limit
the rate at which some pieces of data are sent as they do not
need to be view live at their full temporal resolution.
 Separate from the GUI interface but also important to the
project as a whole is the CAN spec parsing tool. The FSAE
team keeps a text document that outlines all of the messages
that should be seen on the CAN bus. The documents also
specifies other information such as the endianness, CAN ID,
name of the data, position of the data in the payload, and other
useful parameters. In an effort to make adding the ability to
log new future messages as simple as possible the software
has no hardcoded functions to parse out what data is what
based on the CAN IDs, instead several python dictionaries are
stored in a separate file that enable the software to look up the
name and proper way to parse any CAN message received.
Because typing out this lengthy dictionary would be a pain

David Gomez: Black Box Telemetry System

4

and likely result in errors, another python script was made that
is able to parse the FSAE CAN specification text document
and automatically generate the necessary python dictionaries.
When the fact that the Black Box itself only logs raw CAN
messages without parsing them, this means that in order to add
and log a new CAN message, the only thing that needs to be
done is add the parameters of the message to the FSAE CAN
specification text document, a trivial task that even someone
with no software background (i.e. the many mechanical
engineers on the FSAE team) can do.

Fig. 6. The live data viewing interface displaying simulated CAN data.

IV. CONCLUSION
Unfortunately, due to a damaged motor controller preventing

the car from running, the Black Box was not able to be tested
on the actual car before the frame needed to be sent out for
powder coating and this document needed to be turned in. It
was, however, connected to the stationary car electronics in the
shop and was able to log messages although the data was not
very interesting.

The car will be functional again soon though and the Black
Box will be ready to log data and be further improved with
feedback from the team during real testing.

This telemetry system is a great step in the right direction for
the FSAE team and should enable some helpful debugging
support for this year’s car and intelligent design information for
next years’ car.

 The system also serves as a good base for future team
members to build off of. The hardware is more than capable of
meeting the needs of the team for years to come and the
software is extremely extensible and will be able to be quickly
updated to handle unpredicted needs.

As always there is room for improvement though. A PCB
layout is an obvious step that I unfortunely did not have time to
complete. Higher power and bandwidth wireless radios also
exist that could improve upon the XBee. There is also a limitless
number of ways the software could be improved to better
visualize and parse the data the Black Box produces as well.

